Farmfactor.ru

Farmfactor.ru - развлекательный проект

Метки: Гипотеза пуанкаре доказательство скачать, теория пуанкаре вселенная, теория пуанкаре что, гипотеза пуанкаре перельман простыми словами, гипотеза пуанкаре хабрахабр.

Задачи тысячелетия
Равенство классов P и NP
Гипотеза Ходжа
Гипотеза Пуанкаре
Гипотеза Римана
Квантовая теория
Янга — Миллса
Существование и гладкость 
решений уравнений
Навье — Стокса
Гипотеза
Бёрча — Свиннертон-Дайера

Гипотеза Пуанкаре́ является одной из наиболее известных задач топологии. Она даёт достаточное условие того, что пространство является трёхмерной сферой с точностью до деформации.

Содержание

Формулировка

Гипотеза Пуанкаре

В исходной форме гипотеза Пуанкаре утверждает:

Всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере.


Обобщённая гипотеза Пуанкаре

Обобщённая гипотеза Пуанкаре утверждает:

Для любого натурального числа n всякое многообразие размерности n гомотопически эквивалентно сфере размерности n тогда и только тогда, когда оно гомеоморфно ей.

Исходная гипотеза Пуанкаре является частным случаем обобщённой гипотезы при n = 3.

Схема доказательства

Поток Риччи — это определённое уравнение в частных производных, похожее на уравнение теплопроводности. Он позволяет деформировать риманову метрику на многообразии, но в процессе деформации возможно образование «сингулярностей» — точек, в которых кривизна стремится к бесконечности, и деформацию невозможно продолжить. Основной шаг в доказательстве состоит в классификации таких сингулярностей в трёхмерном ориентированном случае. При подходе к сингулярности поток останавливают и производят «хирургию» — выбрасывают малую связную компоненту или вырезают «шею» (то есть, вложенное ), а полученные две дырки заклеивают двумя шарами так, что метрика полученного многообразия становится достаточно гладкой — после чего продолжают деформацию. Классификация сингулярностей позволяет заключить, что каждый «выброшенный кусок» диффеоморфен сферической пространственной форме. Процесс, описанный выше, называется «поток Риччи с хирургией».

При доказательстве гипотезы Пуанкаре начинают с произвольной римановой метрики на односвязном трёхмерном многообразии и применяют к нему поток Риччи с хирургией. Важным шагом является доказательство того, что в результате такого процесса «выбрасывается» всё. Это означает, что исходное многообразие можно представить как набор сферических пространственных форм , соединённых друг с другом трубками . Подсчёт фундаментальной группы показывает, что диффеоморфно связанной сумме набора пространственных форм и более того все тривиальны. Таким образом, является связной суммой набора сфер, то есть, сферой.

История

Обложка журнала Science № 314(5807), 2006 год, провозглашающая доказательство гипотезы Пуанкаре «прорывом года».

В 1900 году Пуанкаре сделал предположение, что трёхмерное многообразие со всеми группами гомологий как у сферы гомеоморфно сфере. В 1904 году он же нашёл контр-пример, называемый теперь сферой Пуанкаре, и сформулировал окончательный вариант своей гипотезы. Попытки доказать гипотезу Пуанкаре привели к многочисленным продвижениям в топологии многообразий.

Доказательства обобщённой гипотезы Пуанкаре для n ⩾ 5 получены в начале 1960—1970-х почти одновременно Смейлом, независимо и другими методами Столлингсом (англ.) (для n ⩾ 7, его доказательство было распространено на случаи n = 5 и 6 Зееманом (англ.)). Доказательство значительно более трудного случая n = 4 было получено только в 1982 году Фридманом. Из теоремы Новикова о топологической инвариантности характеристических классов Понтрягина следует, что существуют гомотопически эквивалентные, но не гомеоморфные многообразия в высоких размерностях.

Доказательство исходной гипотезы Пуанкаре (и более общей гипотезы Тёрстона) было найдено только в 2002 году Григорием Перельманом. Впоследствии доказательство Перельмана было проверено и представлено в развёрнутом виде как минимум тремя группами учёных.[1] Доказательство использует поток Риччи с хирургией и во многом следует плану, намеченному Гамильтоном, который также первым применил поток Риччи.

Признание и оценки

См. также

Примечания

  1. Полное доказательство гипотезы Пуанкаре предъявлено уже тремя независимыми группами математиков 03/08/06, elementy.ru
  2. BREAKTHROUGH OF THE YEAR: The Poincaré Conjecture—Proved». Science 314 (5807): 1848-1849. 10.1126/science.314.5807.1848. (англ.)
  3. The biggest science breakthrough of the year. Mathematical Association of America. 2006.
  4. В частности, «Manifold Destiny» была включена в книгу The Best American Science Writing за 2007 год.
  5. Manifold Destiny: A legendary problem and the battle over who solved it». The New Yorker (August 21). Русский перевод: «Многообразная судьба: Легендарная задача и битва за приоритет».
  6. Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman (англ.). Пресс-релиз математического института Клэя.

Ссылки

  • J. Milnor, The Poincaré Conjecture 99 Years Later: A Progress Report (англ.)
  • С. Николенко Проблемы 2000: Гипотеза Пуанкаре // Компьютерра. — 2006. — № 1-2.
  • John W.Morgan, Gang Tian Ricci Flow and the Poincare Conjecture (англ.)
  • B. Kleiner, J. Lott Notes on Perelman’s papers (англ.)
  • Terence Tao Perelman’s proof of the Poincaré conjecture: a nonlinear PDE perspective (англ.)

Tags: Гипотеза пуанкаре доказательство скачать, теория пуанкаре вселенная, теория пуанкаре что, гипотеза пуанкаре перельман простыми словами, гипотеза пуанкаре хабрахабр.